Consultant 360 Multidisciplinary Medical Information Network

PHOTOCLINIC

PEER REVIEWED

Invasive Streptococcus pneumoniae Infection in an Afebrile Adolescent With HIV

Authors:

Sandra M. Camacho-Gomez, MD, and Yekaterina Sitnitskaya, MD

Department of Pediatrics, NYC Health + Hospitals/Lincoln, The Bronx, New York

Citation:

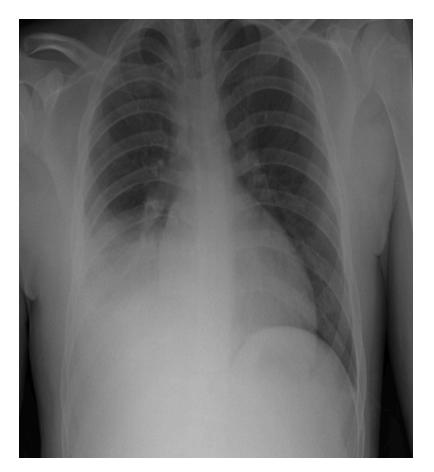
Camacho-Gomez SM, Sitnitskaya Y. Invasive Streptococcus pneumoniae infection in an afebrile adolescent with human immunodeficiency virus [published online November 14, 2017]. Consultant360.

Introduction

The risk of invasive pneumococcal disease (IPD) is increased in immunocompromised persons, including HIV-infected persons, compared with immunocompetent persons.¹⁻⁴ Therefore, despite a significant reduction of IPD cases in the HIV-infected population in the highly active antiretroviral therapy (HAART) era⁵ and in the post–pneumococcal-conjugate vaccine (PCV) era, the risk of IPD is generally still higher in immunocompromised patients.⁶ However, the clinical presentation is the same in those with and without HIV infection.⁴ *Streptococcus pneumoniae* is a major cause of bacteremia, which presents as fever with or without focus. We present a very unusual case of afebrile *S pneumoniae* lobar pneumonia and empyema in a fully vaccinated, infected adolescent.

Case Presentation

An 18-year-old boy with perinatal HIV and hepatitis C coinfection, cirrhosis, coagulopathy, and chronic thrombocytopenia, presented with 4 days of cough and 2 days of right chest pain and


dyspnea, but no fever. The patient was not adherent to antiviral medications. His latest CD4 lymphocyte count was 11%, and his viral load was 28,300 copies/ml.

The patient had received 2 doses of PCV-13 and 3 doses of pneumococcal polysaccharide vaccine (PPV-23), most recently at age 16 years. He had no previous history of IPD.

The patient appeared ill but he was alert and oriented. His temperature was 37°C, respiratory rate was 24 breaths/min, heart rate was 99 beats/min, blood pressure was 115/48 mmHg, and oxygen saturation was 98% on room air.

The patient had subcostal, intercostal and suprasternal retractions, decreased breath sounds, and tracheal breathing in the right base. The spleen was palpable 2 cm below the costal margin. The rest of the physical examination findings were unremarkable.

The white blood cell (WBC) count was 7800/ μ L, the platelet count was 38 × 10³/ μ L, blood urea nitrogen level was 36 mg/dL, and creatinine level was 3.05 mg/dL. A chest radiograph showed right lower-lobe consolidation and moderate effusion, findings that were confirmed with chest ultrasonography (**Figure**).

Initial treatment included ceftriaxone, azithromycin, and trimethoprim-sulfamethoxazole. A chest tube placed for 5 days yielded drainage of approximately 4000 mL of purulent material. The pleural examination showed gram-positive cocci in pairs and 4+ WBCs, but cultures had no bacterial growth. Blood cultures grew pan-sensitive *S pneumoniae*.

The patient was discharged after 10 days of treatment with oral amoxicillin. At follow-up 2 weeks later, he was asymptomatic and had normal findings on lungs auscultation. The patient had restarted HAART and reported full medication adherence.

Discussion

Current guidelines recommend immunizing patients at risk for IPD with PCV-13 and PPV-23.⁷ When it was introduced as PCV-7, the pneumococcal vaccine led to a more than 90% reduction in IPD,⁸ and later PVC-13 further broadened protection.^{9,10} In the past, among HIV-infected persons, bacterial pneumonia occurred with increased frequency with any CD4 lymphocyte count,^{2,3,11} but it developed more frequently among those with CD4 lymphocyte count of less than 200/mm³.³

Although our patient had been appropriately vaccinated, he was not adherent to HAART and had a significant decline in the CD4 lymphocyte count during the preceding year; this probably contributed to the development of IPD. In addition to boosted pneumococcal vaccination, adherence to HAART must encouraged in HIV-infected youth, with emphasis on its role in prevention of severe illness requiring hospitalization and invasive procedures. The absolute leukocyte count is seldom over 15,000 cell/mL, and neutropenia may be more common in patients with HIV infection.^{2,11} It is more helpful in an HIV-infected child with a fever to analyze the relative change in WBC from baseline as a predictor of bacteremia.⁴ Bacteremic pneumococcal pneumonia is a febrile illness.^{12,13} There was a single case report of a pediatric patient with sickle cell disease who was afebrile despite *S pneumoniae* meningitis and bacteremia.¹⁴ Here, we report a case of afebrile IPD in an immunocompromised patient with HIV infection.

Conclusion

Although extremely rare, afebrile IPD is possible and should be considered, especially in an immunocompromised host.

References

- Centers for Disease Control and Prevention. Pneumococcal disease. http://www.cdc.gov/pneumococcal/about/risk-transmission.html. Updated September 6, 2017. Accessed November 6, 2017.
- 2. Gesner M, Desiderio D, Kim M, et al. *Streptococcus pneumoniae* in human immunodeficiency virus type 1-infected children. *Pediatr Infect Dis J.* 1994;13(8):697-703.
- Hirschtick RE, Glassroth J, Jordan MC, et al; Pulmonary Complications of HIV Infection Study Group. Bacterial pneumonia in persons infected with the human immunodeficiency virus. N Engl J Med. 1995;333(13):845-851.
- 4. Janoff EN, Breiman RF, Daley CL, Hopewell PC. Pneumococcal disease during HIV infection: epidemiologic, clinical, and immunologic perspectives. *Ann Intern Med.* 1992;117(4):314-324.

- 5. Kapogiannis BG, Soe MM, Nesheim SR, et al. Trends in bacteremia in the pre- and post-highly active antiretroviral therapy era among HIV-infected children in the US Perinatal AIDS Collaborative Transmission Study (1986-2004). *Pediatrics.* 2008;121(5):e1229-e1339.
- Rose MA, Christopoulou D, Myint TTH, de Schutter I. The burden of invasive pneumococcal disease in children with underlying risk factors in North America and Europe. *Int J Clin Pract.* 2014;68(1):8-19.
- Pneumococcal infections. In: Kimberlin DW, Brady MT, Jackson A, et al, eds. *Red Book: 2015 Report of the Committee on Infectious Diseases*. Elk Grove Village, IL: American Academy of Pediatrics; 2015:626-638.
- 8. Maraqa NF. Pneumococcal infections. *Pediatr Rev.* 2014;35(7):299-310.
- 9. Moore MR, Link-Gelles R, Schaffner W, et al. Effectiveness of 13 valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease in children in the USA: a matched case-control study. *Lancet Respir Med.* 2016; 4(5):399-406.
- 10. Tan TQ. Pediatric invasive pneumococcal disease in the United States in the era of pneumococcal conjugate vaccines. *Clin Microbiol Rev.* 2012;25(3):409-419.
- 11. Dayan PS, Chamberlain JM, Arpadi SM, Farley JJ, Stavola JJ, Rakusan TA. *Streptococcus pneumoniae* bacteremia in children infected with HIV: presentation, course, and outcome. *Pediatr Emerg Care.* 1998;14(3):194-197.
- 12. Toikka P, Virkki R, Mertsola J, Ashron P, Eskola J, Ruuskanen O. Bacteremic pneumococcal pneumonia in children. *Clin Infect Dis.* 1999;29(3):568-572.
- Peters TR, Abramson JS. Streptococcus pneumoniae (pneumococcus). In: Kliegman RM, Stanton BF, St. Geme JW III, Schor NF, Behrman RE, eds. Nelson Textbook of Pediatrics. 19th ed. Philadelphia, PA: Elsevier Saunders; 2011:910-914.
- 14. Santoro JD, Case AE, El-Dahr J, Kanter J. A case of invasive *Streptococcus pneumoniae* in an afebrile adolescent with sickle cell disease. *Clin Pediatr (Phila).* 2013;52(12):1173-1175.

HMP Education HMP Omnimedia HMP Europe