Additional References Related to the Pathogenesis of COPD
1. Eapen MS, Sohal SS. Update on the Pathogenesis of COPD. The New England journal of medicine 2019;381(25):2483-84. doi: 10.1056/NEJMc1914437 [published Online First: 2019/12/19]
2. Sohal SS. Airway Basal Cell Reprogramming and Epithelial-Mesenchymal Transition: A Potential Key to Understanding Early Chronic Obstructive Pulmonary Disease. American journal of respiratory and critical care medicine 2018;197(12):1644-45. doi: 10.1164/rccm.201712-2450LE [published Online First: 2018/02/01]
3. Sohal S, Reid D, Soltani A, et al. Reticular basement membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways of smokers with chronic obstructive pulmonary disease. Respirology 2010;15(6):930 - 38.
4. Sohal SS, Reid D, Soltani A, et al. Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease. Respiratory research 2011;12(1):130. doi: 1465-9921-12-130 [pii] 10.1186/1465-9921-12-130 [published Online First: 2011/10/06]
5. Mahmood MQ, Walters EH, Shukla SD, et al. β-catenin, Twist and Snail: Transcriptional regulation of EMT in smokers and COPD, and relation to airflow obstruction. Scientific Reports 2017;7(1):10832. doi: 10.1038/s41598-017-11375-x
6. Sohal SS, Walters EH. Advanced Non-Small-Cell Lung Cancer. The New England journal of medicine 2017;377(20):1998-9. doi: 10.1056/NEJMc1712794 [published Online First: 2017/11/17]
7. Sohal SS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig 2017;55(2):104-13. doi: 10.1016/j.resinv.2016.11.006 [published Online First: 2017/03/10]
8. Sohal SS, Soltani A, Reid D, et al. A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial-mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study. Int J Chron Obstruct Pulmon Dis 2014;9:533-42. doi: 10.2147/copd.s63911 [published Online First: 2014/06/13]
9. Soltani A, Walters EH, Reid DW, et al. Inhaled corticosteroid normalizes some but not all airway vascular remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2016;11:2359-67. doi: 10.2147/copd.s113176 [published Online First: 2016/10/06]
10. Mahmood MQ, Ward C, Muller HK, et al. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med Oncol 2017;34(3):45. doi: 10.1007/s12032-017-0900-y [published Online First: 2017/02/16]
11. Eapen MS, McAlinden K, Tan D, et al. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD. Respirology 2017;22(6):1125-32. doi: 10.1111/resp.13021 [published Online First: 2017/03/23]
12. Eapen MS, Hansbro PM, McAlinden K, et al. Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD). Scientific reports 2017;7(1):13392.
13. Eapen MS, Sharma P, Sohal SS. Mitochondrial dysfunction in macrophages: a key to defective bacterial phagocytosis in COPD. The European respiratory journal 2019;54(4) doi: 10.1183/13993003.01641-2019 [published Online First: 2019/10/12]
14. Atto B, Eapen Mathew S, Sharma P, et al. New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clinical Science 2019;133(14):1663-703. doi: 10.1042/cs20181009
15. Grigg J, Walters H, Sohal SS, et al. Cigarette smoke and platelet-activating factor receptor dependent adhesion of <em>Streptococcus pneumoniae</em> to lower airway cells. Thorax 2012;67(10):908-13. doi: 10.1136/thoraxjnl-2011-200835
16. Shukla SD, Muller HK, Latham R, et al. Platelet-activating factor receptor (PAFr) is upregulated in small airways and alveoli of smokers and COPD patients. Respirology 2016;21(3):504-10. doi: 10.1111/resp.12709 [published Online First: 2015/12/15]
17. Shukla SD, Mahmood MQ, Weston S, et al. The main rhinovirus respiratory tract adhesion site (ICAM-1) is upregulated in smokers and patients with chronic airflow limitation (CAL). Respiratory research 2017;18(1):6. doi: 10.1186/s12931-016-0483-8 [published Online First: 2017/01/07]
18. Shukla SD, Fairbairn RL, Gell DA, et al. An antagonist of the platelet-activating factor receptor inhibits adherence of both nontypeable Haemophilus influenzae and Streptococcus pneumoniae to cultured human bronchial epithelial cells exposed to cigarette smoke. International journal of chronic obstructive pulmonary disease 2016;11:1647.
19. Sohal SS. Inhaled corticosteroids and increased microbial load in COPD: potential role of epithelial adhesion molecules. The European respiratory journal 2018;51(2) doi: 10.1183/13993003.02257-2017 [published Online First: 2018/02/02]
20. Eapen MS, Hansbro PM, Larsson-Callerfelt AK, et al. Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2018;78(16):1717-40. doi: 10.1007/s40265-018-1001-8 [published Online First: 2018/11/06]
21. Lu W, Sharma P, Eapen MS, et al. Inhaled corticosteroids attenuate epithelial mesenchymal transition: implications for COPD and lung cancer prophylaxis. The European respiratory journal 2019;54(1) doi: 10.1183/13993003.00778-2019 [published Online First: 2019/07/13]
22. Eapen MS, Sharma P, Moodley YP, et al. Dysfunctional Immunity and Microbial Adhesion Molecules in Smoking-induced Pneumonia. American journal of respiratory and critical care medicine 2019;199(2):250-51. doi: 10.1164/rccm.201808-1553LE [published Online First: 2018/10/06]
23. Eapen MS, Sohal SS. Understanding novel mechanisms of microbial pathogenesis in chronic lung disease: implications for new therapeutic targets. Clin Sci (Lond) 2018;132(3):375-79. doi: 10.1042/cs20171261 [published Online First: 2018/02/14]